
SAFECAP domain language for reasoning
about safety and capacity

Alexei Iliasov
School of Comp. Science

Newcastle University
Newcastle upon Tyne, England

alexei.iliasov@ncl.ac.uk

Alexander Romanovsky
School of Comp. Science

Newcastle University
Newcastle upon Tyne, England

alexander.romanovsky@ncl.ac.uk

Abstract—The on-going UK SAFECAP project [1] develops
modelling techniques and tools for improving railway capacity
while ensuring that safety standards are maintained. This
paper reports recent SAFECAP results on designing a Domain
Specific Language (DSL) that will allow engineers to improve
the node and junction capacity while guaranteeing operational
safety. The SAFECAP DSL is introduced to define railway
topology, its logical structure and signalling rules. The formal
semantics of this graphical DSL, defined as part of our
work, allows us to reason about system safety. The tooling
environment, the SAFECAP Platform, offers graphical editing
of railway schemas and an interface to a range of verification
for ensuring railway operational safety. The work on extending
the environment and its deployment in the railway sector
continues with our SAFECAP partners: Invensys Rail and
Swansea University.

I. I NTRODUCTION

Ensuring and demonstrating railway system dependability
is crucial for the way our society operates. Formal methods
have been successfully used in developing various railway
control systems. The best-known examples include the use of
the B Method [2] for designing various metro and suburban
lines, and airport shuttles all over the world [3], [4]. The
formal methods here are used to trace the requirements to
system models and to ensure and demonstrate the system
safety. Our work builds on this work.

Our aim is to develop methods and tools that allow
engineers to improve the node and junction capacity while
guaranteeing operational safety. By capacity we understand-
ing the capability of a given railway layout and associated
signalling rules to provide a certain quality of services
determined by specific traffic patterns. More information
about the SAFECAP approach to capacity may be found on
the project website [1].

To achieve capacity improvement we offer engineers to
model various changes of the layouts and signalling rules
in the vicinity of the junctions or stations and evaluate the
effect of the changes on the overall capacity. The safety of
the original and modified models are checked by automated
tools via a translation of railway topology and signalling
rules into formal verification conditions.

A common domain language for the description of railway
schemes and signalling rules was necessitated by the desire
to apply and compare the differing modelling techniques
used in the project to a common set of problems as defined
by the industrial partner of the project, Invensys. The domain
language is meant to satisfy the requirements of a railway
engineer, who prefers to see a detailed layout presented in
a way as close as possible to the established practice, and
a researcher, who needs to work with a relatively small and
precisely defined set of concepts. It is, perhaps, impossible
to completely meet such conflicting requirements in a single
language but we see it as one of the project goals to make
a solid effort in this direction.

The main influence on this effort is, perhaps, the Dines
Bjørner’s railway domain language [5], [6]. Since we do not
consider the macro level of railway networks our language
has a far narrower scope. We have found it necessary to
differ in the details of topology definition and treatment of
control rules.

A relatively important aspect is the role of the domain
language as means for communicating problems, solutions
and ideas related to the investigation of capacity. This is
important as otherwise the partners work with differing
notations, tools and methodological frameworks. Such di-
versity may be an advantage but only when there is a cross-
fertilization of ideas and methods.

Our domain language is at the heart of a modelling envi-
ronment called the SAFECAP Platform [7]. The environment
offers a visual modelling interface that may be used by a
railway engineer, not trained in any manner in the use of
such tools, to enter and update railways schemas and access
’by a press of a button’ a range of verification tools.

II. SAFECAP DSL

In SAFECAP we study in isolation complex stations and
junctions of a railway network. The focus is on the analysis
and improvement of the throughput of a given layout (also
called a schema) to meet or exceed the conditions of a
service pattern defined by the wider context of the railway



Track Node
2

Ambit
1..*

Section

Junction

Point

1..*

Rule

0..1

Route
1..*

0..1

Line

1..*

Figure 1. Core concepts of SAFECAP DSL and their interrelations.

network containing the layout. In geographical terms, a
larger layout may span over an area of few square miles.

An effort at an improvement requires changing railway
topology and signalling rules. Any such change must be
analysed from the position of operational safety: absence of
collisions and derailments. A complex project may require
hundreds or thousands of changes (such large figures are
achievable with mechanised transformation patterns) making
an efficient and scalable tool support paramount. The aim
of automated verification predicates a certain degree of
formality in the definition of language concepts.

SAFECAP offers a fairly compact DSL (see Fig. 1 for
the summary of language concepts). This is due to the
limited scope of our study - railway junctions rather than
complete networks - and also the desire to have an open-
ended language where differing secondary elements may be
defined for specific problem classes. The domain language
defines the foundational concepts for the modelling of
railway capacity. It attempts to capture, at a suitable level
of abstraction, track topology, route and path definitions
and signalling rules. By design, the language is extensible:
one can dynamically define further attributes for all the
predefined language elements and these are automatically
picked up by the SAFECAP Platform [7] editor at no extra
implementation effort.

In this paper we omit the discussion of various elements
and attributes pertinent primarily to capacity assessment
and focus on the safety part of the language. An emphasis
is made onroute-based signallingprinciples where track
reservation in front of a train is done with the granularity of
statically defined blocks.

We choose not to deal with the possibility of equipment
failures and driver errors. Most such failures and errors have
a catastrophic effect on the short-term capacity of a schema,
making it difficult, at the current stage of research, to devise
practical notions of capacity in presence of failures.

A. Topology definition

The basic element of a SAFECAP schema is the definition
of railway topology.

A track is a piece of physical railway track; it is char-
acterised by length, measured in meters and aheight map
- a detailed profile of track gradient used for capacity
assessment. Track is not directed - a train may travel over
track in either direction. The set of all tracks isT.

A nodeis a fictitious device gluing tracks into a continuous
layout. Each track is associated with two nodes which it
connects.

Set of all nodes of a schema is denoted byN. To formally
capture the role of a node as track connector we say that a
piece of track is defined by two ordered pairs{(f, s), (s, f)}
of nodesf, s ∈ N. A single pair, i.e.,(s, f), identifies a
specific direction of one track that is helpful, for instance,
in the description of point properties. SetT is a symmetric
relation over nodes:T ⊆ N × N.

Tuple (N,T) defines an undirected graph known as the
topology graph of a schema. Such a graph must not contain
self-loops (tracks that start and end on the same node)
and must satisfy certain restriction on the number of tracks
connected to any given node (i.e., thedegreeof a node). A
valid topology contains nodes of degrees 1 to 4. There can
be no isolated nodes (degree 0) and nodes with degree higher
than 41. The following are the types of nodes, arranged by
their degree:

degree 1: a boundary node; such a node marks the
boundary between the considered layout and the
rest of a railway network;

degree 2:a normal node; it is used to connect two pieces
of track;

degree 3:a point node;
degree 4:a diamond crossing.
On the diagram in Fig. 2, node positions are identified

by letters; boundary nodes are highlighted by pale green

1We choose, at this time, to not consider non-standard points and
crossings.



A Q

P TB R C

2500m 240m

50m2500m 50m 500m

Figure 2. A topology graph example.

(gray) squares. For capacity calculations, boundary nodes
may be further qualified intosinkandsourcenodes to define
nodes where trains only appear or disappear. The number
under a track is the track length in meters; height map is
not depicted.2 The diagram defines a topology graph(N,T)
where

• N = {A,B,C,R,Q, T, P};
• T = T ∪ T−1 whereT = {(A,Q), (Q,P ), (B,R),

(R,P ), (P, T ), (T,C)}.

B. Logical structure

To have several trains travelling over the same physical
topology it is normally required to have an additional layer
of structuring. This layer assists in the formulation of train
movement principles that ensure safety.

A point is a machine that moves loose ends of rails to
alter the path of a train. In logical terms, a point identifies
a sub-graph of the overall layout available at any given
moment. A point is positioned over some noden with
degree 3 with three connected tracks:N = {(n, x), (x, n)},
R = {(n, y), (y, n)} and L = {(z, n), (n, z)}. Track N is
said to be thenormal branchof a point; trackR is thereverse
branchandL is the lead track. A train may travel through
a point by going on a lead track and continuing on a branch
or normal track. In the reverse direction, it may go from a
branch or normal track to a lead track. Topologically, normal
and reverse branch roles are interchangeable; a difference
arises in capacity assessment where the reverse branch is,
typically, taken at a lower speed than its normal counterpart.

The set of all points is identified asP ⊆ N × N × N.
For some point(a, b, c) ∈ P, a defines the node position of
the point; tracks{(a, b), (b, a)} and {(a, c), (c, a)} are the
normal and reverse branches of the point. Given a topology
graph and a point triplet one can trivially compute the lead
track of a point.

An ambit3 is a connected sub-graph of the topology graph
equipped with atrain detection circuit. Such a circuit enables
an ambit to detect the presence of a train. An ambit can only
report whether there is a train anywhere on ambit tracks but
not the number of trains, if there is more than one, exact
positions or the occupation status of individual tracks. We
do not consider the possibility of detection circuit failure.

2This diagram is generated by the SAFECAP Platform.
3We have opted for a new way to refer to a train detection circuit to

avoid confusion with inconsistently used existing terminology.

The set of all ambits isA. Since an individual ambita ∈ A

is a sub-graph of the topology graph -a ⊆ N×T - the type
of A is A ⊆ P(N × T). It is required that each ambit is
associated with a unique set of tracks so that no two ambits
share tracks.

It happens that for any schema there is a unique connected
graph where ambits are vertices (see Theorem 1). This fact
means that, when necessary, one can reason at a coarser
level of ambits in place of tracks and every path formulated
in terms of ambits relates to a non-empty set of track-
level paths. Conversely, every track path has a unique
representation at the ambit level. The following is an ambit
graph for the example in Fig. 2:

The ambit-level viewpoint on a schema topology is often
preferable when reasoning about signalling and safety.

There are two important cases of ambits - those that
include points and and those that do not. The latter are called
sectionsand are made of linear track and diamond crossings.
The former are known asjunctionsand, in addition to linear
track and diamond crossing contain one or more points.
From modelling viewpoint, sections are simpler entities as
they do not change their configuration over time.

A route is a continuous connection between two nodes of
a layout. Inroute-based signalling, a route is also the unit
of track reservation - a process that ensures the availability
of some free track in front of a train. Formally, a route is a
path sub-graph of a topology graph. The set of a routes,R,
is a subset of all such sub-graph; overlapping routes (sharing
one or more ambits) are permitted.

A line is a sequence of routes; such a sequence must form
a path through a layout starting and ending on boundary
nodes. The set of all lines is known asL.

From the definition of individual routes, one can may
compute the path of line as a sequence of ambits; in other
words, the path sub-graph of the ambit graph of a schema.
Similarly, a line may be seen a list of tracks, i.e., a path
sub-graph of a topology graph, or as a list of ambits.

We extend our small example with notions of point, ambit,
route and line. The following visual notation is used: the



A Q

P TB R CSQ

SR

ST

2500m

AA

240m

50m

BB

2500m
BA

50m 500m
BC

Figure 3. A topology graph overlaid with logical structuring.

normal and lead part branches of a point are highlighted
in a darker shade while the reverse branch is shown as
a dashed line; route start and end points are marked by
signal4 pictograms and boundary nodes (note that signals
are oriented - signals over the track are for trains travelling
from left to right; signals below the track are for right-to-left
train).
The diagram introduces the following logical structuring
elements:

• Ambits AA,BA,BB,BC, of which

– AA,BA,BC are sections;
– BB is a junction;

• Point (P,R,Q), as a part of junctionBB.
• Routes:AQ, QC, BR, RC, CT , TA, TB;
• Lines: AC, BC, CB, CA.

Note that AB and BA are not valid lines since junctionBB
may not be used, due to the point orientation, to travel from
ambit AA to ambitBA and vice versa.

C. Signalling rules

A signalling rule is a logical condition attached to routes
and points defining when a route is available for travelling
(and at which speed) and when a point may be moved. The
following notation5 is used to write signalling rules:

rule := clear al
| occupied al
| normal pl
| reverse pl
| state rl is rs
| rule ∧ rule
;

whereal ⊆ A is a set of ambits,pl ⊆ P is a set of points,
rl ⊆ L×R is a set of (line, route) pairs of line such that for
any (l, r) ∈ rl it holds that r is a route of linel.

Valuers ∈ N is a natural number signifying a route state,
or, equivalently, the current aspect of a physical or logical

4SAFECAP DSL doesnot define the notion of a signal. The conventional
signal sign is used only as a part of the visual syntax to mark route
boundaries.

5In our tool, the SAFECAP Platform, signalling rules may also be entered
in a tabular form.

(e.g., displayed inside a driver’s cabin) signal. Staters = 0
indicates that a route is not available; staters > 0 indicates
that a route is available and there arers − 1 reserved and
available routes following this route. The only connective
we use to form complex rules is conjunction∧.

Another interpretation of route staters may be given by
introducing a constant functionsafespeed ∈ R× L×N→R

converting the current aspect index into the maximum safe
speed of train. This information is essential for SAFECAP ca-
pacity assessment methods that rely on estimates of time a
train occupies a certain part of a track.

One straightforward definition ofsafespeed is based on
the following principle:at all times, a train must be able
to decelerate to complete stop within the guaranteed free
distance in front.

The minimum braking distance of a train isBD(v, d) =
v2/(2d) wherev is the current speed andd is the maximum
train deceleration. Considering a situation when the frontof
a train is right at the edge of router, distanceBD(v, d) is the
guaranteed free distance in front of a train and is determined
by the cumulative lengths of track ofrs successor routes.
Let sr(r, l, n) be n successors of router on some linel:
sr(r, l, n) = {li(r) | i ∈ 0 .. n} (see conditions (22) in
Section III). Then the safe speed at the start of a route is

safespeed(r, l, n) =

∣

∣

∣

∣

∣

∣

√

2d
∑

r∈sr(r,l,n−1)

∑

t∈elm(r)

len(t)

∣

∣

∣

∣

∣

∣

whereelm(r) = dom(r) ∪ ran(r) and len(t) is the length
of track t. As expected, whenn = 0 (that is, a signal
attached tor is showing ’red’ aspect),sr(r, l, n) = ∅ and
safespeed(r, l, 0) = 0.

The value of safespeed depends on the current linel
(since a route may be shared among lines, one needs to
know l to find the relevant successor routes), the lengths
of individual routes in front of the train and the applicable
value of d. The current value ofsafespeed(r, l, n) may be
computed by an on-board computer or estimated by a train
driver (who must have an intimate knowledge of linel).
This illustrates the connection between safety, as defined by
signalling rules, and capacity which depends on the speed
at which trains progress. When the number of gradations of



proceed aspects is large it may more convenient to report
the state of a route as safe speedsafespeed(r, l, n). There
are signalling procedures operating this way deployed across
Europe.

Signalling rules are assigned to points and a pair of
routes and lines. The rule of a point defines the condition
when the ends of the point may be safely moved (thus
avoiding potential derailment); the rule of a route defines
the condition when the route is available for reservation
and subsequent train movement. Letrule be a syntactic
representation of a rule. Point rules are known asSP and
routes rules asSR:

SP ∈ P → rule SR ∈ L × R → rule

In Section III-B we replace the syntactic form with an
interpretation yielding a boolean when evaluated on a certain
state.

Let’s return to the example in Fig. 3. The following are
the signalling rules ensuring a safe railway operation. Each
route rule protects all the ambits of the route and, in some
cases, requests that pointP is set in an appropriate direction.
Point P may be moved only when ambitBB is clear.

SR(AC,AQ) = clear AA
SR(AC,QC) = clear BB,BC ∧ reverse P
SR(BC,BR) = clear BA
SR(BC,RC) = clear BB,BC ∧ normal P
SR(CA,CT ) = clear BC
SR(CB,CT ) = clear BC
SR(CA, TA) = clear BB,AA ∧ reverse P
SR(CB, TB) = clear BB,BA ∧ normal P

SP (P ) = clear BB

To summarise, thestatic part of a SAFECAP schema is a
structure of the following form

(N,T,A,P,R, L, SP , SR)

where N, T, A, P, R, L are the set of nodes, tracks,
ambits, points, routes and lines;SP and SR are point and
route signalling rules. In the following section we discuss
conditions identifying valid SAFECAP schemas.

III. SEMANTICS

Having defined the concepts of our language we shall
now give a precise formulation oftheory SC of SAFE-
CAP schemas. The elements of the theory are axioms
defining topological, structuring and safety constraints.To
demonstrate that a given schemas is valid we ask to prove
that it constitutes a valid model inSC. All SC axioms are
written in first order logic. When instantiated for a particular
schema, they turn into propositional formulas in ZF set
theory.

There are two major classes ofSC axioms: those dealing
with the well-formedness of the static part of a schema; and

those defining and constraining what we call thedynamic
properties of a schema. The former define properties of
physical track topology and logical structuring into ambits,
routes and lines. The latter address train movement safety.

A. Static Well-formedness

In this section, we start with the characterisation of a
topology graph and then express how the definitions of
points, ambits, routes, lines relate to the topology graph and
each other.
SetN of nodes is not empty,

∅ ⊂ N (1)

SetT of tracks defines a non-empty relation over nodes,

∅ ⊂ T ⊆ N × N (2)

Topology graph(N,T) may not contain self-loops, i.e.,
relationT is irreflexive,

id(N) ∩ T = ∅ (3)

Track may be used in either direction and thus graph(N,T)
is undirected,

T
−1 ⊆ T (4)

Topology graph(N,T) must be connected - there should
exist a path between any two nodes of the graph. This is
shown by proving that from any noden one can reach all
other nodes except the starting node,

∀n · n ∈ N ⇒ T
∗[{n}] = N \ {n} (5)

whereT
∗ is a transitive closure ofT. Node degreedeg(n) =

card(T[{n}] ∪ T
−1[{n}]) signifies the number of tracks

incident to noden. It must hold for every node that the
degree is between 1 and 4,

∀n · n ∈ N ⇒ 1 ≤ deg(n) ≤ 4 (6)

It is required that a schema provides a way for trains to enter
and leave the schema layout. A train may only appear on a
boundary node and disappear on a distinct boundary node,

∃n1, n2 · (n1, n2) ∈ N × N∧
deg(n1) = deg(n2) = 1 ∧ n1 6= n2

(7)

A point is defined by a triplet of nodes,



P ⊆ N × N × N (8)

A point is positioned on a node of degree 3; its normal and
reverse branches are incident to the node where the point is
located,

∀p, n, a, b · p ∈ P ∧ p = (n, a, b)∧
deg(n) = 3 ∧ (n, a) ∈ T ∧ (n, b) ∈ T

(9)

An ambit is a sub-graph of a topology graph,

A ⊆ P(N × T) (10)

The first component of an ambit must define the set of
vertices and the second must be a non-empty set of edges,

∀a, q, p · a ∈ A ∧ a = (q, p) ⇒ p ⊆ q × q ∧ ∅ ⊂ p (11)

Like the overall topology graph, an ambit is made of
undirected track,

∀a, q, p · a ∈ A ∧ a = (q, p) ⇒ p−1 ⊆ p (12)

A sub-graph defined by an ambit must be connected,

∀a, q, p · a ∈ A ∧ a = (q, p)⇒
∀n · n ∈ q ⇒ p∗[{n}] = q \ {n}

(13)

Every track of a layout must be claimed by an ambit,

⋃

a∈A
prj2(a) = T (14)

However, no two ambits are allowed to share a track. In
other words, ambits partition the topology graph,

∀a, b · a, b ∈ A ∧ a 6= b ⇒ prj2(a) ∩ prj2(b) = ∅ (15)

Due to the way train detection circuit hardware is realised,
a point may not be positioned on the boundary of an ambit.
That is, if an ambit contains the node where a point is placed,
the ambit must also contain the lead, reverse and normal
tracks of the point,

∀a, p, u, v, w · a ∈ A ∧ p ∈ P∧
p = (u, v, w) ∧ u ∈ prj1(a) ⇒

(u, v) ∈ prj2(a) ∧ (u,w) ∈ prj2(a)∧
{z} = N \ {u, v, w} ∧ (z, u) ∈ prj2(a)

(16)

In (16) we are entitled to write{z} = N\{u, v, w} since, by
(9), nodeu has degree 3 and thus setN \ {u, v, w} contains

exactly one element. For instance, for the schema in Fig. 3,
it is not possible to have ambitBC to include tracks(P, T )
and (T, P ) as this would mean that point at nodeP spans
over two train detection circuits.

Let E ⊆ A × A be a relation such that(a, b) ∈ E if and
only if there is a common noden with degree 1 in botha
andb. Ambits a andb are called adjacent and tuple(A, E)
defines a graph calledambit graph.

Theorem 1:Ambit graph(A, E) is connected and unique.

This theorem allows one to switch between reasoning at the
level topology and ambit graphs.
A route is a sequence of tracks. We define it as a successor
relation that is an injective and asymmetric function over
tracks,

∀r · r ∈ R⇒
r ∈ T 7→ T ∧ r−1 ∈ T 7→ T ∧ r ∩ r−1 = ∅

(17)

The asymmetry of a route gives it an orientation - every track
included in a route is included with a specific orientation. A
route may not contain cycles. A cycle in a next relation is
present if there is a non-empty subset in the domain of the
relation that is projected into itself,

∀r · r ∈ R ⇒¬∃c · ∅ ⊂ c ⊆ dom(r) ∧ c ⊆ r[c] (18)

A route must be non-empty. It is convenient to state this
property as the existence of unique first and last elements
of a route,

∀r · r ∈ R ⇒ card(fst(r)) = card(lst(r)) = 1 (19)

wherefst(r) andlst(r) determine the first and last elements
of a successor relation:fst(x) = dom(x) \ ran(x) and
lst(x) = ran(x) \ dom(x).

Let ta map a track to an ambit in which the track is
contained. Due to (14) and (15), mappingta : T → A is
functional and surjective. It is defined asta−1(a) = prj2(a).

A path of a route may not start or end in a middle of an
ambit but must rather be delineated by ambit boundaries. If
the tracks of a route are mapped into ambits then the tracks
of the ambits are exactly the tracks of the route,

∀r · r ∈ R ⇒ (ta ◦ ta−1)[elm(r)] = elm(r) (20)

where elm(r) are the elements of relationr: elm(r) =
dom(r) ∪ ran(r).

One may not form a route by traversing a point in a wrong
direction, that is, having a route path going from a branch
to normal track of a point or vice versa,



∀r · r ∈ R⇒
∀p, u, v, w · p ∈ P ∧ p = (u, v, w)⇒
{(v, u), (u,w)} 6⊆ elm(r)∧
{(w, u), (u, v)} 6⊆ elm(r)

(21)

For some pointp = (u, v, w) prohibited paths are se-
quences of tracks((v, u), (u,w)) (going from normal to
reverse branch) and((w, u), (u, v)) (going from reverse to
normal branch). Since a route may not contain cycles (18)
it is impossible to form a legitimate route that includes both
normal and reverse track of a point in a certain orientation.
A line is a sequence of routes. The following condition
simply mirror the properties of a route,

∀l · l ∈ L ⇒ l ∈ R 7→ R ∧ l−1 ∈ R 7→ R ∧ l ∩ l−1 = ∅

∀l · l ∈ L ⇒¬∃c · ∅ ⊂ c ⊆ dom(l) ∧ c ⊆ l[c]
∀l · l ∈ L ⇒ card(fst(l)) = card(lst(l)) = 1

(22)

B. Dynamic properties

A number of important concepts such as, route and
track reservation, train derailment and collision, become
meaningful only when one considers the dynamics of a
railway in terms moving trains, switching points and signals
and so on. It is a fairly extensive subject and, in the scope of
this paper, we only address a subset of dynamic properties
that do involve the notion of a train. The properties we
present in this section give the first approximation of actual
phenomena. We do not consider the fact that many actions
affecting schema properties have a considerable extent in
time.

In addition to static parts of a schema such as tracks
and nodes, we introduce are a number ofstateful entities.
These change their properties over time and especially due
to the movement of trains across the layout of a schema.
The stateful entities we discuss in this section are ambits,
points and routes.

An ambit state reflects the current knowledge about the
ambit occupation by a train,

ΩA ∈ A → BOOL

For some ambita ∈ A, ΩA(a) = ⊤ signifies thata is
occupied andΩA(a) = ⊥ that a is not occupied. The state
of a route/line pair is the current aspect associated with the
route and line. An aspect is encoded as a natural number
with 0 indicating that the route is unavailable (i.e., ’red’
signal) and> 0 for various grades of permissive signals,

ΩR ∈ L × R → N

Finally, the state of a point determines which branch of the
point is currently available for the formation of a route,

ΩP ∈ P → BOOL

ΩP (p) = ⊤ signifies that the normal branch is currently
available.

To reason about signalling rules attached to routes and
points we need to give a concrete interpretation of their
meaning. The following rules defines the conversion of
statements in the language of signalling rules into boolean
values. LetΩ = (ΩA,ΩR,ΩP ). Then

q

. . .
y

Ω
∈ B such that

q

clear al
y

Ω
:= ∀a · a ∈ al ⇒¬ΩA(a)

q

occupied al
y

Ω
:= ∀a · a ∈ al ⇒ ΩA(a)

q

normal pl
y

Ω
:= ∀p · p ∈ pl ⇒ ΩP (p)

q

reverse pl
y

Ω
:= ∀p · p ∈ pl ⇒¬ΩP (p)

q

state rl is rs
y

Ω
:= ∀l, r · (l, r) ∈ rl ⇒ ΩR(l, r) ≥ rs

q

r ∧ q
y

Ω
:=

q

r
y

Ω
∧

q

q
y

Ω

defines an interpretation of signalling rules whereal ⊆ A is
a set of ambits,pl ⊆ P is a set of points,rl ⊆ L × R is a
set of (line, route) pairs.

ΩR may be linked to syntactic rule definitionsSR. The
state of a route indicates a permissive apsect only if the
signalling rule interpretation yields truth,

∀l, r · l ∈ L ∧ r ∈ elm(l) ⇒ (ΩR(l, r) > 0 ⇔
q

SR(l, r)
y

)

In case of a point, there is no dependency between condition
q

SP (p)
y

thet defineswhen point p may be moved and
conditionΩP (p) giving thecurrent branchof point p.

When we consider the dynamic part of a schema, a route
reveals a finer structure. Assuming that a train occupies some
proportion of a route, the route is split into three parts,
namely:

• free ambits behind the train tail;
• currently occupied ambits;
• ambits locked in front of a train.
The diagram illustrates the situation.

free occupied locked

While free and occupied ambits of a route may be
characterised byΩA, locking of ambits is an entirely new
concept that happens to be essential for the demonstration
of absence of train collisions (see Section III-C). Ambit
reservationsAR are defined by a relation associating an
ambit to a line,

AR ⊆ A × L

One can also define the notion of route reservations, i.e.,
RR ⊆ R × L, to explain how routes are reserved in front
of train. The way such reservations are handled critically
affects the estimation of capacity. A detailed discussion of
this subject is outside of the paper scope.



For somer ∈ R from line l the following define the three
parts of a route, as given by the diagram above,

• ta[elm(r)] ∩ (Ω−1
A [{⊥}] \ AR

−1[{l}]) (free ambits of
r);

• ta[elm(r)] ∩ Ω−1
A [{⊤}] (occupied ambits inr);

• ta[elm(r)] ∩ AR
−1[{l}] (locked ambits inr).

These parts do not overlap yet exhaust all the route ambits.
The former is apparent for the first and second and also first
and third parts. Occupied and locked ambits also do not
overlap thanks to the following property demanding that a
locked track is not occupied,

ΩA[prj1(AR)] = 0 (23)

A locked ambit may only be found on an route currently
occupied by a train. Hence, for every ambita locked for
line l, (a, l) ∈ AR, there must exist an unavailable route
from line l containinga,

∀l, a · (a, l) ∈ AR⇒
∃r · r ∈ elm(l) ∧ a ∈ ta[elm(r)] ⇒ ΩR(l, r) = 0

(24)

Ambit reservation forms a continuous path from the front of
train till the end of a route. Considering some locked ambit,
any next ambit is either the last ambit of a current route or
is locked. Symmetrically, a previous ambit is either locked
or is the front of a train occupying the route. For the latter,
we simply state that the ambit is occupied,

∀l, a, r · (a, l) ∈ AR ∧ r ∈ elm(l) ∧ a ∈ ta[elm(r)]⇒

((∃z · nxt(a, r, z) ∧ z ∈ AR
−1[{l}]) ∨ a = ta(lst(r)))∧

(∃z · prv(a, r, z) ∧ z ∈ AR
−1[{l}] ∨ ΩA(z))

(25)

wherenxt(a, r, z) bindsn to the next successor, as defined
by route r, of ambit a: nxt(a, r, z) ≡ {n} = (ta−1 ◦ r ◦
ta)[{a}]. Correspondingly,prv(a, r, z) ≡ {n} = (ta−1 ◦
r−1 ◦ ta)[{a}].
A proceedable aspect of a route requires that all the route
ambits are clear,

∀l · l ∈ L⇒
∀r · r ∈ elm(l) ∧ ΩR(l, r) > 0⇒

ΩA[elm(r)] = {⊥}
(26)

An advanced aspectrs > 1 requires that the successor route
on the same line has the state with the same or immediately
preceding aspect,

∀l · l ∈ L⇒
∀r, a · r ∈ dom(l) ∧ a > 0∧

ΩR(l, r) = a ⇒ ΩR(l, l(r)) ≥ a − 1
(27)

The condition says that if some current signal of linel
at route r is showing a proceed aspectas > 0 then the
successor route on the same line must show an aspect of
at most one step lower. The property is not checked for
the last route of a line (i.e., somer = lst(l)) that, when
not occupied, may show any aspect. We assume, for the
benefit of capacity assessment that the layout outside of the
considered part does not introduce capacity bottleneck and
thus, effectively, has infinite capacity. For this reason, for end
routes of a line we enforce the maximum proceed aspect as
soon the route becomes proceedable.

The possibility of a dynamic change of point orientation
means that at different times differing sets of routes are
available. To convert the current stateΩP of points into a
set of available tracks we define helper functionC ∈ P→T,

C = {⊤ 7→ (u,w),⊥ 7→ (u, v)} ◦ ΩP

C(p) returns a track that is either normal or reverse branch of
point p and isdisabledby the current configuration of point
p. The main role of this construct is to alter the topology
graph to determine which routes are available at the moment.
Graph(N,T \ {C(p) | p ∈ P}) is called theactual topology
graph of a schema.

For the example in Fig. 3, setting pointP to normal
configuration (ΩP (P ) = ⊤) results in the following actual
topology graph:

A Q

P TB R CSQ

SR

ST

2500m

AA

50m

BB

2500m
BA

50m 500m
BC

As the diagram suggest, routesQC andTA are temporar-
ily disabled by pointP .

A point rule must give a condition when all the routes
containing the point are blocked. This ensures that when a
point indicates that it is safe to move the point there are
no trains in the vicinity of the point and that a point is not
moved if it is a part of a prepared route (a route with a
preceedable aspect),

∀p, u, v, w · p ∈ P ∧ p(u, v, w) ∧
q

SP (p)
y

Ω
⇒

∀l · l ∈ L⇒
∀r · r ∈ elm(l) ∧ (u, v) ∈ elm(r)⇒

ΩR(l, r) ≥ 0

(28)

When a route shows a proceedable aspect all of its points
must be set to conform with the path of the route,

∀l · l ∈ L⇒
∀r · r ∈ elm(l) ∧ SR(l, r) > 0⇒

elm(r) ⊆ T \ {C(p) | p ∈ P}
(29)



Statementelm(r) ⊆ T \ {C(p) | p ∈ P} checks that all the
tracks of router are contained in the actual topology graph.
If a point fromr were set incorrectly then some tracks from
elm(r) would be missing inT \ {C(p) | p ∈ P}.

C. Safety Properties

We briefly discuss how the two central safety conditions
of railways are addressed in SAFECAP DSL.

A schema must be free from collisions. A collision happens
when two trains occupy the same part of a track. In terms
of our DSL, we can only speak about potential collisions
due to simultaneous occupation of the same ambit by two
trains.

It is easy to see that one cannot show the absence of
collisions without introducing an explicit train notion and
explaining how a train moves around a railway layout, i.e.,
driving rules. If trains choose to ignore whatever means of
indication of route states are available to them (e.g., track
side signals) there is nothing preventing two trains from
colliding. Hence, the absence of collisions is not a property
of a schema per se but that of a combination of a schema and
train driving rules (and, possibly, interlocking). Of course,
it is essential to establish that a schema is safe under some
sensible driving rules. We have done this with one specific
encoding of human driving and certain ATP principles in an
Event-B model based on the SAFECAP railway schema and
proved the absence of collisions. The proof is inductive:
starting from a collision free state we show that train
movement rules preserve the invariant condition that all
ambits are occupied by at most one train6

A schema must be free from derailments. A derailment
may happen when a train moves over a point changing its
configuration.

There is an explicit rule attached to each point defining
when a point reconfiguration may happen (SP from Section
II-C). Condition (28) states that a point may be moved only
when all the routes containing the point are not occupied.
It is trivial to see that this is sufficient to ensure that none
of track points are occupied when a point moves, provided
that trains are driven in compliance with route states.

IV. TOOLING

SAFECAP DSL is the central component of our modelling
framework - SAFECAP Platform [7]. The purpose of the
Platform is to enable railway engineers to analyse complex
junctions by experimenting with signalling rules, signalling
principles, track topology, safety limits (e.g., speed limits for
points and crossings) while receiving an on-line feedback
from automated verification and analysis tools. The overall
motivation in the development of the Platform is to offer a

6The formulation of verification conditions requires a temporary exten-
sion of ambit detection capabilities, e.g.,ΩA ∈ A → N. Once it is proven
that ∀a · a ∈ A ΩA(a) ≤ 1 one can revert back to normal ambits.

range of techniques for assessing and improving the ability
of layouts and signalling rules to efficiently accommodate
railway traffic. Depending upon objectives, capacity as-
sessment may be done as a calculation of a single value
according to one of predefined formulae or by running a
detailed simulation of train movements. The main instrument
of capacity improvement is a library of patterns transforming
topology graphs and signalling. Patterns are mechanically
instantiated and are encoded in the Epsilon transformation
language.

As an implementation platform, we have decided to use
the Eclipse Integrated Environment and Eclipse Modelling
framework (EMF) to realise our DSL. One important con-
sideration was the ability to benefit from the extensive EMF
ecosystem which offers toolkits for the model manipulation
and the construction of graphical and textual editing tools.
A screenshot of the running platform is given in Fig. 4.

The list of axioms presented in this paper is em-
ployed by the Platform to automatically check safety
of schemas. The primary verification mechanism is con-
straint solving. An automated tool derives the definition
of (N,T,A,P,R, L, SP , SR) structure from a track diagram
and translates it into an input notation of an SMT-LIB
compliant SMT solver. By the standards of SMT solvers,
our models are relatively small so a result is reported nearly
instantaneously. One downside of applying constrain solving
is the absence of any detailed feedback that may be reported
to a user should an error be discovered. To compensate
for this, whenever an SMT solver detects a problem, the
Platform also runs a model checker on the same schema (in
our case, ProB [8] that takes Classical B [2] as an input
notation) to identify a trace leading to a problem. In most
cases, such a trace may be visually replayed by a user to
help with the debugging of a schema.

V. CONCLUSION

One decisions we made early in the project was to develop
a railway domain specific language (DSL) to allow the
engineers to operate in terms of their domain and to hide
the formal verification from them as much as possible. The
definition of this DSL is in the core of our method. The
paper introduces the DSL and shows the way it is used to
allow engineers to reason about railway safety properties.

We have developed a compact and, in our opinion, sim-
ple domain language for describing railway topologies and
signalling rules. The language is strictly defined making it
possible to benefit from widely available verification tools.
In the scope of this paper we were not able to discuss
train movement rules that constitute an important part of
the domain language semantics.

Our plans are to further develop the Platform, the SAFE-
CAP DSL and the methods of analysing and improving
capacity. Route-based signalling discussed in this paper is
only one the several semantics that we plan to support in



Figure 4. SAFECAP Platform screenshot.

the Platform. An interesting challenge, from the viewpoint
of capacity assessment, is modelling the dynamic definition
of ambit boundaries that adapt to train progress and speed.

The railway domain has always been one of the areas
in which formal methods are successfully deployed and
used in a substantial way. For example, in France RATP
(a major rail operator) with a considerable experience in
formal methods, looks favourably on using formal methods
to conform to the development standards that they require.
From the mid 90s, in France, RATP, the main rail operator
with considerable experience of formal methods, has been
approving various developments that use the B method as
meeting the development standards RATP require [4]. There
are now several tool development companies supporting the
use of the B [2] and Event-B [9], [10] methods in the railway
domain: ClearSy, Systerel, and Formal Mind. In addition to
the B method model-checking has been successfully used by
various railway companies working togtehr with universities
(see, for example, [11], [12].

ACKNOWLEDGMENT

This research is supported by the EPSRC/RSSB Safe-
Cap project. We are grateful to Simon Chadwick, Markus
Roggenbach and Dominic Taylor for their feedback on the
earlier versions of this work.

REFERENCES

[1] SAFECAP Project, “Project website,” 2012, available at
http://safecap.cs.ncl.ac.uk.

[2] J.-R. Abrial,The B-Book. Cambridge University Press, 1996.

[3] P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier, “Mét́eor:
A Successful Application of B in a Large Project,” inPro-
ceedings of the Wold Congress on Formal Methods in the
Development of Computing Systems-Volume I - Volume I, ser.
FM ’99. London, UK, UK: Springer-Verlag, 1999, pp. 369–
387.

[4] D. Essaḿe and D. Dolĺe, “B in Large-Scale Projects: The
Canarsie Line CBTC Experience.” inB, ser. Lecture Notes
in Computer Science, J. Julliand and O. Kouchnarenko, Eds.,
vol. 4355. Springer, 2007, pp. 252–254.

[5] D. Bjørner, C. George, and S. Prehn, “Scheduling and
rescheduling of trains,” 1995.

[6] D. Bjørner, “Formal Software Techniques in Railway Sys-
tems.” pp. 1–12, 2000.

[7] SAFECAP Project, “SAFECAP Platfrom website,” 2012, avail-
able at http://sf.net/projects/safecap.

[8] M. Leuschel and M. Butler, “ProB: A Model Checker for B,”
in Formal Methods Europe 2003, A. Keijiro, S. Gnesi, and
M. Dino, Eds., vol. 2805. Springer-Verlag, LNCS, 2003, pp.
855–874.

[9] J.-R. Abrial, Modelling in Event-B. Cambridge University
Press, 2010.

[10] ——, “Rigorous development of complex fault-tolerant sys-
tems.” Springer-Verlag, 2006, ch. Train systems, pp. 1–36.

[11] M. Leuschel, J. Falampin, F. Fritz, and D. Plagge, “Automated
property verification for large scale B models with ProB.”
Formal Asp. Comput., vol. 23, no. 6, pp. 683–709, 2011.

[12] A. Ferrari, G. Magnani, D. Grasso, and A. Fantechi, “Model
checking interlocking control tables.” inFORMS/FORMAT,
E. Schnieder and G. Tarnai, Eds. Springer, 2010, pp. 107–
115.


